Brownian Motion and Stochastic Calculus Dylan Possamaï

Assignment 1—solutions

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} .

On hitting times of closed and open sets

Let E be a finite-dimensional Euclidean space, and let X be an E-valued and \mathbb{F} -adapted process.

1) Prove that if $G \subset E$ is open and X has right- or left-continuous trajectories, then $\rho_{X,G}$ and $\tau_{X,G}$ are \mathbb{F} -optional times (see Definition 1.3.3 in the lecture notes)

Let us fix some t > 0. Then

$$\{\tau_{X,G} < t\} = \bigcup_{0 \le s < t} \{X_s \in G\} = \bigcup_{s \in [0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\rho_{X,G} < t\} = \bigcup_{0 < s < t} \{X_s \in G\} = \bigcup_{s \in (0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\rho_{X,G} < t\} = \bigcup_{0 < s < t} \{X_s \in G\} = \bigcup_{s \in (0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\rho_{X,G} < t\} = \bigcup_{0 < s < t} \{X_s \in G\} = \bigcup_{s \in (0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\rho_{X,G} < t\} = \bigcup_{0 < s < t} \{X_s \in G\} = \bigcup_{s \in (0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\varphi_{X,G} < t\} = \bigcup_{s \in (0,t) \cap \mathbb{Q}} \{X_s \in G\} \in \mathcal{F}_t, \ \{\varphi_{X,G} < t\} \in \mathcal{F}_t, \$$

where we used both the continuity of X and the fact that G is open to reduce the intersection to rational times only.

2) Show that if $G \subset E$ is closed and X has continuous trajectories, then $\tau_{X,G}$ is an \mathbb{F} -stopping time.

Since G is closed, we can define the distance function to G by $E \ni x \xrightarrow{d(\cdot,G)} \inf_{y \in G} ||x - y||_E$. For any positive integer n, we define then

$$G_n := \{ x \in E : d(x, G) < 1/n \}.$$

Since the distance function is continuous, G_n is open for each $n \in \mathbb{N}^*$, and $\tau_{X,G_n} < \tau_{X,G}$ on the set $\{\tau_{X,G} \in (0, +\infty)\}$. Indeed, since X is right-continuous and G is closed, then $X_{\tau_{X,G}} \in G$ on $\{\tau_{X,G} < +\infty\}$, and the left-continuity of X implies that $\tau_{X,G_n} < \tau_{X,G}$ on the set $\{\tau_{X,G} \in (0, +\infty)\}$. On the set $\{\tau_{X,G} \in (0, +\infty)\}$, the sequence $(\tau_{X,G_n})_{n \in \mathbb{N}^*}$ is clearly increasing, and therefore converges to some $\tau(\omega) \leq \tau_{X,G}(\omega)$ for every $\omega \in \Omega$. The left-continuity of X implies that necessarily, $\tau(\omega) = \tau_{X,G}(\omega)$ for every $\omega \in \Omega$. Then, because G is closed and X is right-continuous

$$\{\tau_{X,G} \le 0\} = \{\tau_{X,G} = 0\} = \{X_0 \in G\} \in \mathcal{F}_0,\$$

and for any t > 0

$$\{\tau_{X,G} \le t\} = \{\tau_{X,G} = 0\} \cup \{\tau_{X,G} \in (0,t]\} = \bigcap_{n \in \mathbb{N}^*} \{\tau_{X,G_n} < t\}$$

which belongs to \mathcal{F}_t by 1), since G_n is open.

3) Show that if $G \subset E$ is closed, and X is càdlàg then $\theta_{X,G}$ is an \mathbb{F} -stopping time (see Definition 1.3.5 in the lecture notes).

The proof is similar to 2). Simply notice that for any $t \ge 0$

$$\{\theta_{X,G} \le t\} = \{\inf\{d(X_r, G) : r \in \mathbb{Q} \cap [0, t]\} = 0\} \cup \{X_t \in G\}.$$

Properties of stopping times

1) Show that if τ is an \mathbb{F} -optional time, and $\theta \in (0, +\infty)$, then $\tau + \theta$ is an \mathbb{F} -stopping time.

Fix some $t \ge 0$, we have

$$\{\tau + \theta \le t\} = \begin{cases} \emptyset, \text{ if } t < \theta, \\ \{\tau \le t - \theta\}, \text{ otherwise.} \end{cases}$$

Hence, since τ is an \mathbb{F} -optional time, se deduce that $\{\tau + \theta \leq t\} \in \mathcal{F}_{\max\{0,t-\theta\}+} \subset \mathcal{F}_t$, which implies the desired result.

2) Show that if τ and ρ are \mathbb{F} -stopping times, so are $\tau \wedge \rho$, $\tau \vee \rho$ and $\tau + \rho$.

Fix again some $t \ge 0$. We have

$$\{\tau \land \rho \le t\} = \{\tau \le t\} \bigcup \{\rho \le t\} \in \mathcal{F}_t, \ \{\tau \lor \rho \le t\} = \{\tau \le t\} \bigcap \{\rho \le t\} \in \mathcal{F}_t,$$

since τ and ρ are \mathbb{F} -stopping times.

Next, we have

$$\{\tau + \rho > t\} = (\{\tau = 0\} \cap \{\rho > t\}) \bigcup (\{\tau > t\} \cap \{\rho = 0\}) \bigcup (\{\tau \ge t\} \cap \{\rho > 0\}) \bigcup (\{0 < \tau < t\} \cap \{\tau + \rho > t\}).$$

The first three events are obviously in \mathcal{F}_t since τ and ρ are \mathbb{F} -stopping times (which implies that for any $t \ge 0$ all the sets $\{\psi \le t\}, \{\psi > t\}, \{\psi = t\}, \{\psi \ge t\}$, for $\psi = \tau, \rho$, are all in \mathcal{F}_t). Finally, the fourth one can be rewritten as

$$\{0 < \tau < t\} \cap \{\tau + \rho > t\} = \bigcup_{r \in (0,t) \cap \mathbb{Q}} \{r < \tau < t\} \cap \{\rho > t - r\} \in \mathcal{F}_t.$$

This proves that $\{\tau + \rho > t\}$, and thus $\{\tau + \rho \le t\}$, belongs to \mathcal{F}_t .

3) Show that if τ and ρ are \mathbb{F} -optional times, then $\tau + \rho$ is also an \mathbb{F} -optional time. It is moreover an \mathbb{F} -stopping time if either τ and ρ are positive, or if $\tau > 0$ and τ is an \mathbb{F} -stopping time.

Exactly as above, we can write for any $r \ge 0$

$$\{\tau + \rho \ge t\} = (\{\tau = 0\} \cap \{\rho \ge t\}) \bigcup (\{\tau \ge t\} \cap \{\rho = 0\}) \bigcup (\{\tau \ge t\} \cap \{\rho > 0\}) \bigcup (\{0 < \tau < t\} \cap \{\tau + \rho \ge t\}).$$

The first three events are obviously in \mathcal{F}_t since τ and ρ are \mathbb{F} -optional times (which implies that for any $t \ge 0$ all the sets $\{\psi < t\}$, $\{\psi \ge t\}$, for $\psi = \tau, \rho$, are all in \mathcal{F}_t). Finally, the fourth one can be rewritten as

$$\{0 < \tau < t\} \cap \{\tau + \rho > t\} = \bigcup_{r \in (0,t) \cap \mathbb{Q}} \{r < \tau < t\} \cap \{\rho \ge t - r\} \in \mathcal{F}_t.$$

This proves that $\{\tau + \rho \ge t\}$, and thus $\{\tau + \rho < t\}$, belongs to \mathcal{F}_t .

If now both τ and ρ are positive, we have

$$\{\tau + \rho > t\} = \{\tau \ge t\} \bigcup (\{\tau < t\} \cap \{\tau + \rho > t\}).$$

The first event is in \mathcal{F}_t because τ is an \mathbb{F} -optional time, while the second one can be rewritten

$$\{\tau < t\} \cap \{\tau + \rho > t\} = \bigcup_{r \in (0,t) \cap \mathbb{Q}} \{r < \tau < t\} \cap \{\rho \ge t - r\} \in \mathcal{F}_t.$$

This proves that $\tau + \rho$ is then an \mathbb{F} -stopping time.

Finally, let us assume that τ is a positive \mathbb{F} -stopping time. Then we have

$$\{\tau + \rho > t\} = (\{\tau > t\} \cap \{\rho = 0\}) \bigcup (\{\tau \ge t\} \cap \{\rho > 0\}) \bigcup (\{\tau < t\} \cap \{\tau + \rho > t\}),$$

and we can conclude as before using the fact that

$$\{\tau < t\} \cap \{\tau + \rho > t\} = \bigcup_{r \in (0,t) \cap \mathbb{Q}} \{r < \tau < t\} \cap \{\rho \ge t - r\} \in \mathcal{F}_t.$$

4) Let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of \mathbb{F} -optional times. Show that the following four random times are \mathbb{F} -optional times

$$\sup_{n \in \mathbb{N}} \tau_n, \ \inf_{n \in \mathbb{N}} \tau_n, \ \lim_{n \to +\infty} \tau_n, \ \lim_{n \to +\infty} \tau_n$$

Furthermore, if the $(\tau_n)_{n\in\mathbb{N}}$ are actually \mathbb{F} -stopping times, show that $\sup_{n\in\mathbb{N}}\tau_n$ is an \mathbb{F} -stopping time too.

Notice that for any $t \ge 0$, using the fact that all the $(\tau_n)_{n \in \mathbb{N}}$ are \mathbb{F} -optional times

$$\left\{\sup_{n\in\mathbb{N}}\tau_n < t\right\} = \bigcup_{k\in\mathbb{N}^\star} \bigcap_{n\in\mathbb{N}} \left\{\tau_n < t - 1/k\right\} \in \mathcal{F}_t, \ \left\{\inf_{n\in\mathbb{N}}\tau_n < t\right\} = \bigcup_{n\in\mathbb{N}} \left\{\tau_n < t\right\} \in \mathcal{F}_t,$$

which proves the first two required results. For the last two ones, it suffices to recall that by definition

$$\lim_{n \to +\infty} \tau_n = \inf_{n \in \mathbb{N}} \sup_{k \ge n} \tau_k, \ \lim_{n \to +\infty} \tau_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} \tau_k,$$

and to use what we just proved.

Finally, if the $(\tau_n)_{n\in\mathbb{N}}$ are \mathbb{F} -stopping times, we have

$$\left\{\sup_{n\in\mathbb{N}}\tau_n\leq t\right\}=\bigcap_{n\in\mathbb{N}}\left\{\tau_n\leq t\right\}\in\mathcal{F}_t$$

Hitting times and completeness of \mathbb{F}

Let X be an \mathbb{R} -valued and right-continuous process. The goal of this exercise is to show that for any $M \in \mathbb{R}$, the hitting time $\tau_{X,[M,+\infty)}$ is an \mathbb{F} -stopping time when \mathbb{F} is \mathbb{P} -complete.

1) Given any \mathbb{F} -stopping time σ which is below $\tau_{X,[M,+\infty)}$, define

$$\sigma^+ := \inf \left\{ t \ge \sigma \colon \sup_{\sigma \le u \le t} X_u \ge M \right\}.$$

Show that $\sigma \leq \sigma^+ \leq \tau_{X,[M,+\infty)}$, that σ^+ is still an \mathbb{F} -stopping time, and that σ^+ is strictly greater than σ whenever $\sigma < \tau_{X,[M,+\infty)}$.

It is immediate that $\sigma \leq \sigma^+ \leq \tau_{X,[M,+\infty)}$, and we claim that σ^+ is still an \mathbb{F} -stopping time. Indeed, σ^+ is less than or equal to a non-negative time t precisely when, for each $\varepsilon > 0$, there is a time s in-between σ and t such that $X_s > M - \varepsilon$. By right-continuity, it is enough to restrict to rational multiples of t, which means that

$$\{\sigma^+ \le t\} = \bigcap_{n=1}^{\infty} \bigcup_{q \in \mathbb{Q} \cap [0,1]} \left(\{\sigma \le qt\} \cap \{X_{qt} > M - 1/n\}\right) \in \mathcal{F}_t$$

Furthermore, using right continuity again, σ^+ will be strictly greater than σ whenever $\sigma < \tau_{X,[M,+\infty)}$.

2) Let $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ consist of the set of all \mathbb{F} -stopping times σ satisfying $\sigma \leq \tau_{X,[M,+\infty)}$, and define

$$\sigma_{\infty} := \operatorname{essup}^{\mathbb{P}} \mathcal{T}_{0,\tau_{X,[M,+\infty)}}.$$

Prove that the family $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ is upward directed and deduce that there exists a sequence $(\tau_n)_{n\in\mathbb{N}}$ valued in $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ such that

$$\sigma_{\infty} = \sup_{n \in \mathbb{N}} \tau_n.$$

The family $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ is upward directed, since the maximum of two \mathbb{F} -stopping times below $\tau_{X,[M,+\infty)}$ is itself an \mathbb{F} -stopping time below $\tau_{X,[M,+\infty)}$ by the previous exercise. Therefore, there exists a sequence $(\tau_n)_{n\in\mathbb{N}}$ valued in $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ such that

$$\sigma_{\infty} = \sup_{n \in \mathbb{N}} \tau_n.$$

3) Show that $\sigma_{\infty} \in \mathcal{T}_{0,\tau_{X,[M,+\infty)}}$ and that $\sigma_{\infty}^{+} = \sigma_{\infty}$, \mathbb{P} -a.s.

Again by the previous exercise, we have that $\sigma_{\infty} \in \mathcal{T}_{0,\tau_{X,[M,+\infty)}}$, see question 4). The \mathbb{F} -stopping time σ_{∞}^+ defined as above satisfies therefore $\sigma_{\infty} \leq \sigma_{\infty}^+ \leq \tau_{X,[M,+\infty)}$ and is therefore also in $\mathcal{T}_{0,\tau_{X,[M,+\infty)}}$. From the definition of the \mathbb{P} -essential supremum, this implies that $\sigma_{\infty}^+ \leq \sigma_{\infty}$ and, therefore, $\sigma_{\infty}^+ = \sigma_{\infty}$ with \mathbb{P} -probability one.

4) Deduce that $\sigma_{\infty} = \tau_{X,[M,+\infty)}$ and conclude.

As mentioned in 1), $\sigma_{\infty}^+ > \sigma_{\infty}$ whenever $\sigma_{\infty} < \tau_{X,[M,+\infty)}$, which therefore has zero \mathbb{P} -probability, and we conclude using the \mathbb{P} -completeness of \mathbb{F} .